Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings

نویسندگان

  • Yijun Chai
  • Chen Lin
  • Xian Wang
  • Yueming Li
چکیده

Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC) systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL), which grows between the thermally grown oxide (TGO) and the bond coat (BC), is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INVESTIGATION ON EFFECT OF BOND COAT REPLACEMENT ON HOT CORROSION PROPERTIES OF THERMAL BARRIER COATINGS

In the present study NiCrAlY bond coating layer was produced by electroplating against common atmospheric plasma spraying (APS). Both types of the bond coats were applied on IN738LC base metal then, the YSZ (ZrO2-8% Y2O3) thermal barrier top layer was coated by atmospheric plasma spray technique. Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come ...

متن کامل

Failure Mechanisms Investigation in Thermal Barrier Coatings under Isothermal and Non-sothermal Fatigue Loadings using Design of Experiments

In this article, failure and fracture mechanisms in an aluminum alloy (which has been used in diesel internal combustion engines), with and without ceramic thermal barrier coatings, have been investigated under isothermal and non-isothermal fatigue loadings. In this research, the base material is an aluminum-silicon-magnesium alloy and the thermal barrier coating includes a metallic bond coat l...

متن کامل

Simulation of the effect of sub- micron interface roughness on the stress distribution in functionally graded thermal barrier coatings (FG- TBC)

 In this research, a numerical modeling was utilized to calculate the stresses caused during thermal cycling in a functionally graded thermal barrier coating (FG - TBC). The temperature – dependent material response of this protective material was taken into account and the effects of thermal cycle and interface morphology of the ceramic / metallic layer in functionally graded coating system wa...

متن کامل

Thermal barrier coating effect on stress and temperature distribution of diesel engines cylinder heads using a two-layer viscoelasticity model with considering viscosity effects

This paper presents finite element analysis (FEA) of a coated and uncoated cylinder heads of a diesel engine to examine the distribution of temperature and stress. A thermal barrier coating system was applied on the combustion chamber of the cylinder heads, consists of two-layer systems: a ceramic top coat (TC), made of yttria stabilized zirconia (YSZ), ZrO2-8%Y2O3 and also a metallic bond coat...

متن کامل

THE EFFECTS OF PLASMA SPRAY PARAMETERS ON THE MICROSTRUCTURE AND PHASE COMPOSITION OF THERMAL BARRIER COATINGS MADE BY SPPS PROCESS

In this paper the effect of plasma spray parameters, atomizing gas and substrate preheat temperature on microstructure and phase composition of YSZ coatings produced by SPPS process have been investigated. The experimental results showed that increasing the power of plasma, using hydrogen as the precursor atomizing gas and increasing substrate preheat temperature decrease the amount of non-pyro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016